renderer.cpp Example File

hellovulkancubes/renderer.cpp

  /****************************************************************************
  **
  ** Copyright (C) 2017 The Qt Company Ltd.
  ** Contact: https://www.qt.io/licensing/
  **
  ** This file is part of the examples of the Qt Toolkit.
  **
  ** $QT_BEGIN_LICENSE:BSD$
  ** Commercial License Usage
  ** Licensees holding valid commercial Qt licenses may use this file in
  ** accordance with the commercial license agreement provided with the
  ** Software or, alternatively, in accordance with the terms contained in
  ** a written agreement between you and The Qt Company. For licensing terms
  ** and conditions see https://www.qt.io/terms-conditions. For further
  ** information use the contact form at https://www.qt.io/contact-us.
  **
  ** BSD License Usage
  ** Alternatively, you may use this file under the terms of the BSD license
  ** as follows:
  **
  ** "Redistribution and use in source and binary forms, with or without
  ** modification, are permitted provided that the following conditions are
  ** met:
  **   * Redistributions of source code must retain the above copyright
  **     notice, this list of conditions and the following disclaimer.
  **   * Redistributions in binary form must reproduce the above copyright
  **     notice, this list of conditions and the following disclaimer in
  **     the documentation and/or other materials provided with the
  **     distribution.
  **   * Neither the name of The Qt Company Ltd nor the names of its
  **     contributors may be used to endorse or promote products derived
  **     from this software without specific prior written permission.
  **
  **
  ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
  **
  ** $QT_END_LICENSE$
  **
  ****************************************************************************/

  #include "renderer.h"
  #include <QVulkanFunctions>
  #include <QtConcurrentRun>
  #include <QTime>

  static float quadVert[] = {
      -1, -1, 0,
      -1,  1, 0,
       1, -1, 0,
       1,  1, 0
  };

  #define DBG Q_UNLIKELY(m_window->isDebugEnabled())

  const int MAX_INSTANCES = 16384;
  const VkDeviceSize PER_INSTANCE_DATA_SIZE = 6 * sizeof(float); // instTranslate, instDiffuseAdjust

  static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
  {
      return (v + byteAlign - 1) & ~(byteAlign - 1);
  }

  Renderer::Renderer(VulkanWindow *w, int initialCount)
      : m_window(w),
        // Have the light positioned just behind the default camera position, looking forward.
        m_lightPos(0.0f, 0.0f, 25.0f),
        m_cam(QVector3D(0.0f, 0.0f, 20.0f)), // starting camera position
        m_instCount(initialCount)
  {
      qsrand(QTime(0, 0, 0).secsTo(QTime::currentTime()));

      m_floorModel.translate(0, -5, 0);
      m_floorModel.rotate(-90, 1, 0, 0);
      m_floorModel.scale(20, 100, 1);

      m_blockMesh.load(QStringLiteral(":/block.buf"));
      m_logoMesh.load(QStringLiteral(":/qt_logo.buf"));

      QObject::connect(&m_frameWatcher, &QFutureWatcherBase::finished, [this] {
          if (m_framePending) {
              m_framePending = false;
              m_window->frameReady();
              m_window->requestUpdate();
          }
      });
  }

  void Renderer::preInitResources()
  {
      const QVector<int> sampleCounts = m_window->supportedSampleCounts();
      if (DBG)
          qDebug() << "Supported sample counts:" << sampleCounts;
      if (sampleCounts.contains(4)) {
          if (DBG)
              qDebug("Requesting 4x MSAA");
          m_window->setSampleCount(4);
      }
  }

  void Renderer::initResources()
  {
      if (DBG)
          qDebug("Renderer init");

      m_animating = true;
      m_framePending = false;

      QVulkanInstance *inst = m_window->vulkanInstance();
      VkDevice dev = m_window->device();
      const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
      const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;

      m_devFuncs = inst->deviceFunctions(dev);

      // Note the std140 packing rules. A vec3 still has an alignment of 16,
      // while a mat3 is like 3 * vec3.
      m_itemMaterial.vertUniSize = aligned(2 * 64 + 48, uniAlign); // see color_phong.vert
      m_itemMaterial.fragUniSize = aligned(6 * 16 + 12 + 2 * 4, uniAlign); // see color_phong.frag

      if (!m_itemMaterial.vs.isValid())
          m_itemMaterial.vs.load(inst, dev, QStringLiteral(":/color_phong_vert.spv"));
      if (!m_itemMaterial.fs.isValid())
          m_itemMaterial.fs.load(inst, dev, QStringLiteral(":/color_phong_frag.spv"));

      if (!m_floorMaterial.vs.isValid())
          m_floorMaterial.vs.load(inst, dev, QStringLiteral(":/color_vert.spv"));
      if (!m_floorMaterial.fs.isValid())
          m_floorMaterial.fs.load(inst, dev, QStringLiteral(":/color_frag.spv"));

      m_pipelinesFuture = QtConcurrent::run(this, &Renderer::createPipelines);
  }

  void Renderer::createPipelines()
  {
      VkDevice dev = m_window->device();

      VkPipelineCacheCreateInfo pipelineCacheInfo;
      memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
      pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
      VkResult err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
      if (err != VK_SUCCESS)
          qFatal("Failed to create pipeline cache: %d", err);

      createItemPipeline();
      createFloorPipeline();
  }

  void Renderer::createItemPipeline()
  {
      VkDevice dev = m_window->device();

      // Vertex layout.
      VkVertexInputBindingDescription vertexBindingDesc[] = {
          {
              0, // binding
              8 * sizeof(float),
              VK_VERTEX_INPUT_RATE_VERTEX
          },
          {
              1,
              6 * sizeof(float),
              VK_VERTEX_INPUT_RATE_INSTANCE
          }
      };
      VkVertexInputAttributeDescription vertexAttrDesc[] = {
          { // position
              0, // location
              0, // binding
              VK_FORMAT_R32G32B32_SFLOAT,
              0 // offset
          },
          { // normal
              1,
              0,
              VK_FORMAT_R32G32B32_SFLOAT,
              5 * sizeof(float)
          },
          { // instTranslate
              2,
              1,
              VK_FORMAT_R32G32B32_SFLOAT,
              0
          },
          { // instDiffuseAdjust
              3,
              1,
              VK_FORMAT_R32G32B32_SFLOAT,
              3 * sizeof(float)
          }
      };

      VkPipelineVertexInputStateCreateInfo vertexInputInfo;
      vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
      vertexInputInfo.pNext = nullptr;
      vertexInputInfo.flags = 0;
      vertexInputInfo.vertexBindingDescriptionCount = sizeof(vertexBindingDesc) / sizeof(vertexBindingDesc[0]);
      vertexInputInfo.pVertexBindingDescriptions = vertexBindingDesc;
      vertexInputInfo.vertexAttributeDescriptionCount = sizeof(vertexAttrDesc) / sizeof(vertexAttrDesc[0]);
      vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;

      // Descriptor set layout.
      VkDescriptorPoolSize descPoolSizes[] = {
          { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 2 }
      };
      VkDescriptorPoolCreateInfo descPoolInfo;
      memset(&descPoolInfo, 0, sizeof(descPoolInfo));
      descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
      descPoolInfo.maxSets = 1; // a single set is enough due to the dynamic uniform buffer
      descPoolInfo.poolSizeCount = sizeof(descPoolSizes) / sizeof(descPoolSizes[0]);
      descPoolInfo.pPoolSizes = descPoolSizes;
      VkResult err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_itemMaterial.descPool);
      if (err != VK_SUCCESS)
          qFatal("Failed to create descriptor pool: %d", err);

      VkDescriptorSetLayoutBinding layoutBindings[] =
      {
          {
              0, // binding
              VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
              1, // descriptorCount
              VK_SHADER_STAGE_VERTEX_BIT,
              nullptr
          },
          {
              1,
              VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
              1,
              VK_SHADER_STAGE_FRAGMENT_BIT,
              nullptr
          }
      };
      VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
          VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
          nullptr,
          0,
          sizeof(layoutBindings) / sizeof(layoutBindings[0]),
          layoutBindings
      };
      err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_itemMaterial.descSetLayout);
      if (err != VK_SUCCESS)
          qFatal("Failed to create descriptor set layout: %d", err);

      VkDescriptorSetAllocateInfo descSetAllocInfo = {
          VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
          nullptr,
          m_itemMaterial.descPool,
          1,
          &m_itemMaterial.descSetLayout
      };
      err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_itemMaterial.descSet);
      if (err != VK_SUCCESS)
          qFatal("Failed to allocate descriptor set: %d", err);

      // Graphics pipeline.
      VkPipelineLayoutCreateInfo pipelineLayoutInfo;
      memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
      pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
      pipelineLayoutInfo.setLayoutCount = 1;
      pipelineLayoutInfo.pSetLayouts = &m_itemMaterial.descSetLayout;

      err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_itemMaterial.pipelineLayout);
      if (err != VK_SUCCESS)
          qFatal("Failed to create pipeline layout: %d", err);

      VkGraphicsPipelineCreateInfo pipelineInfo;
      memset(&pipelineInfo, 0, sizeof(pipelineInfo));
      pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;

      VkPipelineShaderStageCreateInfo shaderStages[2] = {
          {
              VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
              nullptr,
              0,
              VK_SHADER_STAGE_VERTEX_BIT,
              m_itemMaterial.vs.data()->shaderModule,
              "main",
              nullptr
          },
          {
              VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
              nullptr,
              0,
              VK_SHADER_STAGE_FRAGMENT_BIT,
              m_itemMaterial.fs.data()->shaderModule,
              "main",
              nullptr
          }
      };
      pipelineInfo.stageCount = 2;
      pipelineInfo.pStages = shaderStages;

      pipelineInfo.pVertexInputState = &vertexInputInfo;

      VkPipelineInputAssemblyStateCreateInfo ia;
      memset(&ia, 0, sizeof(ia));
      ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
      ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
      pipelineInfo.pInputAssemblyState = &ia;

      VkPipelineViewportStateCreateInfo vp;
      memset(&vp, 0, sizeof(vp));
      vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
      vp.viewportCount = 1;
      vp.scissorCount = 1;
      pipelineInfo.pViewportState = &vp;

      VkPipelineRasterizationStateCreateInfo rs;
      memset(&rs, 0, sizeof(rs));
      rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
      rs.polygonMode = VK_POLYGON_MODE_FILL;
      rs.cullMode = VK_CULL_MODE_BACK_BIT;
      rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
      rs.lineWidth = 1.0f;
      pipelineInfo.pRasterizationState = &rs;

      VkPipelineMultisampleStateCreateInfo ms;
      memset(&ms, 0, sizeof(ms));
      ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
      ms.rasterizationSamples = m_window->sampleCountFlagBits();
      pipelineInfo.pMultisampleState = &ms;

      VkPipelineDepthStencilStateCreateInfo ds;
      memset(&ds, 0, sizeof(ds));
      ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
      ds.depthTestEnable = VK_TRUE;
      ds.depthWriteEnable = VK_TRUE;
      ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
      pipelineInfo.pDepthStencilState = &ds;

      VkPipelineColorBlendStateCreateInfo cb;
      memset(&cb, 0, sizeof(cb));
      cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
      VkPipelineColorBlendAttachmentState att;
      memset(&att, 0, sizeof(att));
      att.colorWriteMask = 0xF;
      cb.attachmentCount = 1;
      cb.pAttachments = &att;
      pipelineInfo.pColorBlendState = &cb;

      VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
      VkPipelineDynamicStateCreateInfo dyn;
      memset(&dyn, 0, sizeof(dyn));
      dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
      dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
      dyn.pDynamicStates = dynEnable;
      pipelineInfo.pDynamicState = &dyn;

      pipelineInfo.layout = m_itemMaterial.pipelineLayout;
      pipelineInfo.renderPass = m_window->defaultRenderPass();

      err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_itemMaterial.pipeline);
      if (err != VK_SUCCESS)
          qFatal("Failed to create graphics pipeline: %d", err);
  }

  void Renderer::createFloorPipeline()
  {
      VkDevice dev = m_window->device();

      // Vertex layout.
      VkVertexInputBindingDescription vertexBindingDesc = {
          0, // binding
          3 * sizeof(float),
          VK_VERTEX_INPUT_RATE_VERTEX
      };
      VkVertexInputAttributeDescription vertexAttrDesc[] = {
          { // position
              0, // location
              0, // binding
              VK_FORMAT_R32G32B32_SFLOAT,
              0 // offset
          },
      };

      VkPipelineVertexInputStateCreateInfo vertexInputInfo;
      vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
      vertexInputInfo.pNext = nullptr;
      vertexInputInfo.flags = 0;
      vertexInputInfo.vertexBindingDescriptionCount = 1;
      vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
      vertexInputInfo.vertexAttributeDescriptionCount = sizeof(vertexAttrDesc) / sizeof(vertexAttrDesc[0]);
      vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;

      // Do not bother with uniform buffers and descriptors, all the data fits
      // into the spec mandated minimum of 128 bytes for push constants.
      VkPushConstantRange pcr[] = {
          // mvp
          {
              VK_SHADER_STAGE_VERTEX_BIT,
              0,
              64
          },
          // color
          {
              VK_SHADER_STAGE_FRAGMENT_BIT,
              64,
              12
          }
      };

      VkPipelineLayoutCreateInfo pipelineLayoutInfo;
      memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
      pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
      pipelineLayoutInfo.pushConstantRangeCount = sizeof(pcr) / sizeof(pcr[0]);
      pipelineLayoutInfo.pPushConstantRanges = pcr;

      VkResult err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_floorMaterial.pipelineLayout);
      if (err != VK_SUCCESS)
          qFatal("Failed to create pipeline layout: %d", err);

      VkGraphicsPipelineCreateInfo pipelineInfo;
      memset(&pipelineInfo, 0, sizeof(pipelineInfo));
      pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;

      VkPipelineShaderStageCreateInfo shaderStages[2] = {
          {
              VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
              nullptr,
              0,
              VK_SHADER_STAGE_VERTEX_BIT,
              m_floorMaterial.vs.data()->shaderModule,
              "main",
              nullptr
          },
          {
              VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
              nullptr,
              0,
              VK_SHADER_STAGE_FRAGMENT_BIT,
              m_floorMaterial.fs.data()->shaderModule,
              "main",
              nullptr
          }
      };
      pipelineInfo.stageCount = 2;
      pipelineInfo.pStages = shaderStages;

      pipelineInfo.pVertexInputState = &vertexInputInfo;

      VkPipelineInputAssemblyStateCreateInfo ia;
      memset(&ia, 0, sizeof(ia));
      ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
      ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
      pipelineInfo.pInputAssemblyState = &ia;

      VkPipelineViewportStateCreateInfo vp;
      memset(&vp, 0, sizeof(vp));
      vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
      vp.viewportCount = 1;
      vp.scissorCount = 1;
      pipelineInfo.pViewportState = &vp;

      VkPipelineRasterizationStateCreateInfo rs;
      memset(&rs, 0, sizeof(rs));
      rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
      rs.polygonMode = VK_POLYGON_MODE_FILL;
      rs.cullMode = VK_CULL_MODE_BACK_BIT;
      rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
      rs.lineWidth = 1.0f;
      pipelineInfo.pRasterizationState = &rs;

      VkPipelineMultisampleStateCreateInfo ms;
      memset(&ms, 0, sizeof(ms));
      ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
      ms.rasterizationSamples = m_window->sampleCountFlagBits();
      pipelineInfo.pMultisampleState = &ms;

      VkPipelineDepthStencilStateCreateInfo ds;
      memset(&ds, 0, sizeof(ds));
      ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
      ds.depthTestEnable = VK_TRUE;
      ds.depthWriteEnable = VK_TRUE;
      ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
      pipelineInfo.pDepthStencilState = &ds;

      VkPipelineColorBlendStateCreateInfo cb;
      memset(&cb, 0, sizeof(cb));
      cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
      VkPipelineColorBlendAttachmentState att;
      memset(&att, 0, sizeof(att));
      att.colorWriteMask = 0xF;
      cb.attachmentCount = 1;
      cb.pAttachments = &att;
      pipelineInfo.pColorBlendState = &cb;

      VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
      VkPipelineDynamicStateCreateInfo dyn;
      memset(&dyn, 0, sizeof(dyn));
      dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
      dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
      dyn.pDynamicStates = dynEnable;
      pipelineInfo.pDynamicState = &dyn;

      pipelineInfo.layout = m_floorMaterial.pipelineLayout;
      pipelineInfo.renderPass = m_window->defaultRenderPass();

      err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_floorMaterial.pipeline);
      if (err != VK_SUCCESS)
          qFatal("Failed to create graphics pipeline: %d", err);
  }

  void Renderer::initSwapChainResources()
  {
      m_proj = m_window->clipCorrectionMatrix();
      const QSize sz = m_window->swapChainImageSize();
      m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 1000.0f);
      markViewProjDirty();
  }

  void Renderer::releaseSwapChainResources()
  {
      // It is important to finish the pending frame right here since this is the
      // last opportunity to act with all resources intact.
      m_frameWatcher.waitForFinished();
      // Cannot count on the finished() signal being emitted before returning
      // from here.
      if (m_framePending) {
          m_framePending = false;
          m_window->frameReady();
      }
  }

  void Renderer::releaseResources()
  {
      if (DBG)
          qDebug("Renderer release");

      m_pipelinesFuture.waitForFinished();

      VkDevice dev = m_window->device();

      if (m_itemMaterial.descSetLayout) {
          m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_itemMaterial.descSetLayout, nullptr);
          m_itemMaterial.descSetLayout = VK_NULL_HANDLE;
      }

      if (m_itemMaterial.descPool) {
          m_devFuncs->vkDestroyDescriptorPool(dev, m_itemMaterial.descPool, nullptr);
          m_itemMaterial.descPool = VK_NULL_HANDLE;
      }

      if (m_itemMaterial.pipeline) {
          m_devFuncs->vkDestroyPipeline(dev, m_itemMaterial.pipeline, nullptr);
          m_itemMaterial.pipeline = VK_NULL_HANDLE;
      }

      if (m_itemMaterial.pipelineLayout) {
          m_devFuncs->vkDestroyPipelineLayout(dev, m_itemMaterial.pipelineLayout, nullptr);
          m_itemMaterial.pipelineLayout = VK_NULL_HANDLE;
      }

      if (m_floorMaterial.pipeline) {
          m_devFuncs->vkDestroyPipeline(dev, m_floorMaterial.pipeline, nullptr);
          m_floorMaterial.pipeline = VK_NULL_HANDLE;
      }

      if (m_floorMaterial.pipelineLayout) {
          m_devFuncs->vkDestroyPipelineLayout(dev, m_floorMaterial.pipelineLayout, nullptr);
          m_floorMaterial.pipelineLayout = VK_NULL_HANDLE;
      }

      if (m_pipelineCache) {
          m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
          m_pipelineCache = VK_NULL_HANDLE;
      }

      if (m_blockVertexBuf) {
          m_devFuncs->vkDestroyBuffer(dev, m_blockVertexBuf, nullptr);
          m_blockVertexBuf = VK_NULL_HANDLE;
      }

      if (m_logoVertexBuf) {
          m_devFuncs->vkDestroyBuffer(dev, m_logoVertexBuf, nullptr);
          m_logoVertexBuf = VK_NULL_HANDLE;
      }

      if (m_floorVertexBuf) {
          m_devFuncs->vkDestroyBuffer(dev, m_floorVertexBuf, nullptr);
          m_floorVertexBuf = VK_NULL_HANDLE;
      }

      if (m_uniBuf) {
          m_devFuncs->vkDestroyBuffer(dev, m_uniBuf, nullptr);
          m_uniBuf = VK_NULL_HANDLE;
      }

      if (m_bufMem) {
          m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
          m_bufMem = VK_NULL_HANDLE;
      }

      if (m_instBuf) {
          m_devFuncs->vkDestroyBuffer(dev, m_instBuf, nullptr);
          m_instBuf = VK_NULL_HANDLE;
      }

      if (m_instBufMem) {
          m_devFuncs->vkFreeMemory(dev, m_instBufMem, nullptr);
          m_instBufMem = VK_NULL_HANDLE;
      }

      if (m_itemMaterial.vs.isValid()) {
          m_devFuncs->vkDestroyShaderModule(dev, m_itemMaterial.vs.data()->shaderModule, nullptr);
          m_itemMaterial.vs.reset();
      }
      if (m_itemMaterial.fs.isValid()) {
          m_devFuncs->vkDestroyShaderModule(dev, m_itemMaterial.fs.data()->shaderModule, nullptr);
          m_itemMaterial.fs.reset();
      }

      if (m_floorMaterial.vs.isValid()) {
          m_devFuncs->vkDestroyShaderModule(dev, m_floorMaterial.vs.data()->shaderModule, nullptr);
          m_floorMaterial.vs.reset();
      }
      if (m_floorMaterial.fs.isValid()) {
          m_devFuncs->vkDestroyShaderModule(dev, m_floorMaterial.fs.data()->shaderModule, nullptr);
          m_floorMaterial.fs.reset();
      }
  }

  void Renderer::ensureBuffers()
  {
      if (m_blockVertexBuf)
          return;

      VkDevice dev = m_window->device();
      const int concurrentFrameCount = m_window->concurrentFrameCount();

      // Vertex buffer for the block.
      VkBufferCreateInfo bufInfo;
      memset(&bufInfo, 0, sizeof(bufInfo));
      bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
      const int blockMeshByteCount = m_blockMesh.data()->vertexCount * 8 * sizeof(float);
      bufInfo.size = blockMeshByteCount;
      bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
      VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_blockVertexBuf);
      if (err != VK_SUCCESS)
          qFatal("Failed to create vertex buffer: %d", err);

      VkMemoryRequirements blockVertMemReq;
      m_devFuncs->vkGetBufferMemoryRequirements(dev, m_blockVertexBuf, &blockVertMemReq);

      // Vertex buffer for the logo.
      const int logoMeshByteCount = m_logoMesh.data()->vertexCount * 8 * sizeof(float);
      bufInfo.size = logoMeshByteCount;
      bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
      err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_logoVertexBuf);
      if (err != VK_SUCCESS)
          qFatal("Failed to create vertex buffer: %d", err);

      VkMemoryRequirements logoVertMemReq;
      m_devFuncs->vkGetBufferMemoryRequirements(dev, m_logoVertexBuf, &logoVertMemReq);

      // Vertex buffer for the floor.
      bufInfo.size = sizeof(quadVert);
      err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_floorVertexBuf);
      if (err != VK_SUCCESS)
          qFatal("Failed to create vertex buffer: %d", err);

      VkMemoryRequirements floorVertMemReq;
      m_devFuncs->vkGetBufferMemoryRequirements(dev, m_floorVertexBuf, &floorVertMemReq);

      // Uniform buffer. Instead of using multiple descriptor sets, we take a
      // different approach: have a single dynamic uniform buffer and specify the
      // active-frame-specific offset at the time of binding the descriptor set.
      bufInfo.size = (m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize) * concurrentFrameCount;
      bufInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
      err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_uniBuf);
      if (err != VK_SUCCESS)
          qFatal("Failed to create uniform buffer: %d", err);

      VkMemoryRequirements uniMemReq;
      m_devFuncs->vkGetBufferMemoryRequirements(dev, m_uniBuf, &uniMemReq);

      // Allocate memory for everything at once.
      VkDeviceSize logoVertStartOffset = aligned(0 + blockVertMemReq.size, logoVertMemReq.alignment);
      VkDeviceSize floorVertStartOffset = aligned(logoVertStartOffset + logoVertMemReq.size, floorVertMemReq.alignment);
      m_itemMaterial.uniMemStartOffset = aligned(floorVertStartOffset + floorVertMemReq.size, uniMemReq.alignment);
      VkMemoryAllocateInfo memAllocInfo = {
          VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
          nullptr,
          m_itemMaterial.uniMemStartOffset + uniMemReq.size,
          m_window->hostVisibleMemoryIndex()
      };
      err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
      if (err != VK_SUCCESS)
          qFatal("Failed to allocate memory: %d", err);

      err = m_devFuncs->vkBindBufferMemory(dev, m_blockVertexBuf, m_bufMem, 0);
      if (err != VK_SUCCESS)
          qFatal("Failed to bind vertex buffer memory: %d", err);
      err = m_devFuncs->vkBindBufferMemory(dev, m_logoVertexBuf, m_bufMem, logoVertStartOffset);
      if (err != VK_SUCCESS)
          qFatal("Failed to bind vertex buffer memory: %d", err);
      err = m_devFuncs->vkBindBufferMemory(dev, m_floorVertexBuf, m_bufMem, floorVertStartOffset);
      if (err != VK_SUCCESS)
          qFatal("Failed to bind vertex buffer memory: %d", err);
      err = m_devFuncs->vkBindBufferMemory(dev, m_uniBuf, m_bufMem, m_itemMaterial.uniMemStartOffset);
      if (err != VK_SUCCESS)
          qFatal("Failed to bind uniform buffer memory: %d", err);

      // Copy vertex data.
      quint8 *p;
      err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, m_itemMaterial.uniMemStartOffset, 0, reinterpret_cast<void **>(&p));
      if (err != VK_SUCCESS)
          qFatal("Failed to map memory: %d", err);
      memcpy(p, m_blockMesh.data()->geom.constData(), blockMeshByteCount);
      memcpy(p + logoVertStartOffset, m_logoMesh.data()->geom.constData(), logoMeshByteCount);
      memcpy(p + floorVertStartOffset, quadVert, sizeof(quadVert));
      m_devFuncs->vkUnmapMemory(dev, m_bufMem);

      // Write descriptors for the uniform buffers in the vertex and fragment shaders.
      VkDescriptorBufferInfo vertUni = { m_uniBuf, 0, m_itemMaterial.vertUniSize };
      VkDescriptorBufferInfo fragUni = { m_uniBuf, m_itemMaterial.vertUniSize, m_itemMaterial.fragUniSize };

      VkWriteDescriptorSet descWrite[2];
      memset(descWrite, 0, sizeof(descWrite));
      descWrite[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
      descWrite[0].dstSet = m_itemMaterial.descSet;
      descWrite[0].dstBinding = 0;
      descWrite[0].descriptorCount = 1;
      descWrite[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
      descWrite[0].pBufferInfo = &vertUni;

      descWrite[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
      descWrite[1].dstSet = m_itemMaterial.descSet;
      descWrite[1].dstBinding = 1;
      descWrite[1].descriptorCount = 1;
      descWrite[1].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
      descWrite[1].pBufferInfo = &fragUni;

      m_devFuncs->vkUpdateDescriptorSets(dev, 2, descWrite, 0, nullptr);
  }

  void Renderer::ensureInstanceBuffer()
  {
      if (m_instCount == m_preparedInstCount && m_instBuf)
          return;

      Q_ASSERT(m_instCount <= MAX_INSTANCES);

      VkDevice dev = m_window->device();

      // allocate only once, for the maximum instance count
      if (!m_instBuf) {
          VkBufferCreateInfo bufInfo;
          memset(&bufInfo, 0, sizeof(bufInfo));
          bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
          bufInfo.size = MAX_INSTANCES * PER_INSTANCE_DATA_SIZE;
          bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;

          // Keep a copy of the data since we may lose all graphics resources on
          // unexpose, and reinitializing to new random positions afterwards
          // would not be nice.
          m_instData.resize(bufInfo.size);

          VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_instBuf);
          if (err != VK_SUCCESS)
              qFatal("Failed to create instance buffer: %d", err);

          VkMemoryRequirements memReq;
          m_devFuncs->vkGetBufferMemoryRequirements(dev, m_instBuf, &memReq);
          if (DBG)
              qDebug("Allocating %u bytes for instance data", uint32_t(memReq.size));

          VkMemoryAllocateInfo memAllocInfo = {
              VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
              nullptr,
              memReq.size,
              m_window->hostVisibleMemoryIndex()
          };
          err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_instBufMem);
          if (err != VK_SUCCESS)
              qFatal("Failed to allocate memory: %d", err);

          err = m_devFuncs->vkBindBufferMemory(dev, m_instBuf, m_instBufMem, 0);
          if (err != VK_SUCCESS)
              qFatal("Failed to bind instance buffer memory: %d", err);
      }

      if (m_instCount != m_preparedInstCount) {
          if (DBG)
              qDebug("Preparing instances %d..%d", m_preparedInstCount, m_instCount - 1);
          char *p = m_instData.data();
          p += m_preparedInstCount * PER_INSTANCE_DATA_SIZE;
          auto gen = [](float a, float b) { return float((qrand() % int(b - a + 1)) + a); };
          for (int i = m_preparedInstCount; i < m_instCount; ++i) {
              // Apply a random translation to each instance of the mesh.
              float t[] = { gen(-5, 5), gen(-4, 6), gen(-30, 5) };
              memcpy(p, t, 12);
              // Apply a random adjustment to the diffuse color for each instance. (default is 0.7)
              float d[] = { gen(-6, 3) / 10.0f, gen(-6, 3) / 10.0f, gen(-6, 3) / 10.0f };
              memcpy(p + 12, d, 12);
              p += PER_INSTANCE_DATA_SIZE;
          }
          m_preparedInstCount = m_instCount;
      }

      quint8 *p;
      VkResult err = m_devFuncs->vkMapMemory(dev, m_instBufMem, 0, m_instCount * PER_INSTANCE_DATA_SIZE, 0,
                                             reinterpret_cast<void **>(&p));
      if (err != VK_SUCCESS)
          qFatal("Failed to map memory: %d", err);
      memcpy(p, m_instData.constData(), m_instData.size());
      m_devFuncs->vkUnmapMemory(dev, m_instBufMem);
  }

  void Renderer::getMatrices(QMatrix4x4 *vp, QMatrix4x4 *model, QMatrix3x3 *modelNormal, QVector3D *eyePos)
  {
      model->setToIdentity();
      if (m_useLogo)
          model->rotate(90, 1, 0, 0);
      model->rotate(m_rotation, 1, 1, 0);

      *modelNormal = model->normalMatrix();

      QMatrix4x4 view = m_cam.viewMatrix();
      *vp = m_proj * view;

      *eyePos = view.inverted().column(3).toVector3D();
  }

  void Renderer::writeFragUni(quint8 *p, const QVector3D &eyePos)
  {
      float ECCameraPosition[] = { eyePos.x(), eyePos.y(), eyePos.z() };
      memcpy(p, ECCameraPosition, 12);
      p += 16;

      // Material
      float ka[] = { 0.05f, 0.05f, 0.05f };
      memcpy(p, ka, 12);
      p += 16;

      float kd[] = { 0.7f, 0.7f, 0.7f };
      memcpy(p, kd, 12);
      p += 16;

      float ks[] = { 0.66f, 0.66f, 0.66f };
      memcpy(p, ks, 12);
      p += 16;

      // Light parameters
      float ECLightPosition[] = { m_lightPos.x(), m_lightPos.y(), m_lightPos.z() };
      memcpy(p, ECLightPosition, 12);
      p += 16;

      float att[] = { 1, 0, 0 };
      memcpy(p, att, 12);
      p += 16;

      float color[] = { 1.0f, 1.0f, 1.0f };
      memcpy(p, color, 12);
      p += 12; // next we have two floats which have an alignment of 4, hence 12 only

      float intensity = 0.8f;
      memcpy(p, &intensity, 4);
      p += 4;

      float specularExp = 150.0f;
      memcpy(p, &specularExp, 4);
      p += 4;
  }

  void Renderer::startNextFrame()
  {
      // For demonstration purposes offload the command buffer generation onto a
      // worker thread and continue with the frame submission only when it has
      // finished.
      Q_ASSERT(!m_framePending);
      m_framePending = true;
      QFuture<void> future = QtConcurrent::run(this, &Renderer::buildFrame);
      m_frameWatcher.setFuture(future);
  }

  void Renderer::buildFrame()
  {
      QMutexLocker locker(&m_guiMutex);

      ensureBuffers();
      ensureInstanceBuffer();
      m_pipelinesFuture.waitForFinished();

      VkCommandBuffer cb = m_window->currentCommandBuffer();
      const QSize sz = m_window->swapChainImageSize();

      VkClearColorValue clearColor = {{ 0.67f, 0.84f, 0.9f, 1.0f }};
      VkClearDepthStencilValue clearDS = { 1, 0 };
      VkClearValue clearValues[3];
      memset(clearValues, 0, sizeof(clearValues));
      clearValues[0].color = clearValues[2].color = clearColor;
      clearValues[1].depthStencil = clearDS;

      VkRenderPassBeginInfo rpBeginInfo;
      memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
      rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
      rpBeginInfo.renderPass = m_window->defaultRenderPass();
      rpBeginInfo.framebuffer = m_window->currentFramebuffer();
      rpBeginInfo.renderArea.extent.width = sz.width();
      rpBeginInfo.renderArea.extent.height = sz.height();
      rpBeginInfo.clearValueCount = m_window->sampleCountFlagBits() > VK_SAMPLE_COUNT_1_BIT ? 3 : 2;
      rpBeginInfo.pClearValues = clearValues;
      VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
      m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);

      VkViewport viewport = {
          0, 0,
          float(sz.width()), float(sz.height()),
          0, 1
      };
      m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);

      VkRect2D scissor = {
          { 0, 0 },
          { uint32_t(sz.width()), uint32_t(sz.height()) }
      };
      m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);

      buildDrawCallsForFloor();
      buildDrawCallsForItems();

      m_devFuncs->vkCmdEndRenderPass(cmdBuf);
  }

  void Renderer::buildDrawCallsForItems()
  {
      VkDevice dev = m_window->device();
      VkCommandBuffer cb = m_window->currentCommandBuffer();

      m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_itemMaterial.pipeline);

      VkDeviceSize vbOffset = 0;
      m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, m_useLogo ? &m_logoVertexBuf : &m_blockVertexBuf, &vbOffset);
      m_devFuncs->vkCmdBindVertexBuffers(cb, 1, 1, &m_instBuf, &vbOffset);

      // Now provide offsets so that the two dynamic buffers point to the
      // beginning of the vertex and fragment uniform data for the current frame.
      uint32_t frameUniOffset = m_window->currentFrame() * (m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize);
      uint32_t frameUniOffsets[] = { frameUniOffset, frameUniOffset };
      m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_itemMaterial.pipelineLayout, 0, 1,
                                          &m_itemMaterial.descSet, 2, frameUniOffsets);

      if (m_animating)
          m_rotation += 0.5;

      if (m_animating || m_vpDirty) {
          if (m_vpDirty)
              --m_vpDirty;
          QMatrix4x4 vp, model;
          QMatrix3x3 modelNormal;
          QVector3D eyePos;
          getMatrices(&vp, &model, &modelNormal, &eyePos);

          // Map the uniform data for the current frame, ignore the geometry data at
          // the beginning and the uniforms for other frames.
          quint8 *p;
          VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem,
                                                 m_itemMaterial.uniMemStartOffset + frameUniOffset,
                                                 m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize,
                                                 0, reinterpret_cast<void **>(&p));
          if (err != VK_SUCCESS)
              qFatal("Failed to map memory: %d", err);

          // Vertex shader uniforms
          memcpy(p, vp.constData(), 64);
          memcpy(p + 64, model.constData(), 64);
          const float *mnp = modelNormal.constData();
          memcpy(p + 128, mnp, 12);
          memcpy(p + 128 + 16, mnp + 3, 12);
          memcpy(p + 128 + 32, mnp + 6, 12);

          // Fragment shader uniforms
          p += m_itemMaterial.vertUniSize;
          writeFragUni(p, eyePos);

          m_devFuncs->vkUnmapMemory(dev, m_bufMem);
      }

      m_devFuncs->vkCmdDraw(cb, (m_useLogo ? m_logoMesh.data() : m_blockMesh.data())->vertexCount, m_instCount, 0, 0);
  }

  void Renderer::buildDrawCallsForFloor()
  {
      VkCommandBuffer cb = m_window->currentCommandBuffer();

      m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_floorMaterial.pipeline);

      VkDeviceSize vbOffset = 0;
      m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_floorVertexBuf, &vbOffset);

      QMatrix4x4 mvp = m_proj * m_cam.viewMatrix() * m_floorModel;
      m_devFuncs->vkCmdPushConstants(cb, m_floorMaterial.pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, 64, mvp.constData());
      float color[] = { 0.67f, 1.0f, 0.2f };
      m_devFuncs->vkCmdPushConstants(cb, m_floorMaterial.pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 64, 12, color);

      m_devFuncs->vkCmdDraw(cb, 4, 1, 0, 0);
  }

  void Renderer::addNew()
  {
      QMutexLocker locker(&m_guiMutex);
      m_instCount = qMin(m_instCount + 16, MAX_INSTANCES);
  }

  void Renderer::yaw(float degrees)
  {
      QMutexLocker locker(&m_guiMutex);
      m_cam.yaw(degrees);
      markViewProjDirty();
  }

  void Renderer::pitch(float degrees)
  {
      QMutexLocker locker(&m_guiMutex);
      m_cam.pitch(degrees);
      markViewProjDirty();
  }

  void Renderer::walk(float amount)
  {
      QMutexLocker locker(&m_guiMutex);
      m_cam.walk(amount);
      markViewProjDirty();
  }

  void Renderer::strafe(float amount)
  {
      QMutexLocker locker(&m_guiMutex);
      m_cam.strafe(amount);
      markViewProjDirty();
  }

  void Renderer::setUseLogo(bool b)
  {
      QMutexLocker locker(&m_guiMutex);
      m_useLogo = b;
      if (!m_animating)
          m_window->requestUpdate();
  }